Contents

- **Small Signal FETs XMFS Series** ... 1
 (XMFS2-M1, XMFS3-M1)
 - Features / Applications / Dimensions
 - Absolute Maximum Ratings / Electrical Specifications / S Parameters 2
 - Characteristics ... 3

- **Power FETs XMFP Series** .. 4
 (XMFP1-M3, XMFP2-M3, XMFP3-M3, XMFP4-M4)
 - Features / Applications / Dimensions
 - Absolute Maximum Ratings / Electrical Specifications 5
 - S Parameters ... 6
 - Characteristics .. 7

- **Land Patterns and Soldering Condition** .. 9
- **Tape Dimensions and Reel Dimensions** .. 10
- **Notice** ... 11
- **Block Diagram of Test System** ... 12
 - Noise Figure Test System / Power Test System / IM3 Test System
- **Block Diagram of Application** ... 13
 - Cellular Phone / PHS / BS/CS Receiver / GPS Receiver / Wireless LAN
- **Test Board** ... 14
 - XMFP1-M3 1.8GHz Test Board
 - Layout / Schematic / Typical Characteristics / Handling of Test Board
 - XMFP2-M3 1.8GHz Test Board ... 15
 - Layout / Schematic / Typical Characteristics / Handling of Test Board
 - XMFP3-M3 0.9GHz Test Board ... 16
 - Layout / Schematic / Typical Characteristics / Handling of Test Board
 - XMFP3-M3 1.8GHz Test Board ... 17
 - Layout / Schematic / Typical Characteristics / Handling of Test Board
 - XMFP4-M4 0.9GHz Test Board ... 18
 - Layout / Schematic / Typical Characteristics / Handling of Test Board
 - XMFP4-M4 1.8GHz Test Board ... 19
 - Layout / Schematic / Typical Characteristics / Handling of Test Board
XMFS Series are designed for low noise applications up to C-band (to 6GHz). These devices are supplied in the plastic packages (SOT-143).

FEATURES
1. Low Noise Figure.
2. High Associated Gain.

APPLICATIONS
- Low Noise Amplifier. (for Wireless LAN, DBS tuner/ converter, GPS receiver)
- Oscillator. (for Wireless LAN, DBS tuner/ converter, GPS receiver)

DIMENSIONS

<table>
<thead>
<tr>
<th>Pin Marking</th>
<th>Pin Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2): Gate</td>
<td>(2): Gate</td>
</tr>
<tr>
<td>(3): Source</td>
<td>(3): Source</td>
</tr>
<tr>
<td>(4): Drain</td>
<td>(4): Drain</td>
</tr>
<tr>
<td>B : Lot No.</td>
<td>B : Lot No.</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS
(Ta=25°C)

<table>
<thead>
<tr>
<th></th>
<th>V_{DS}</th>
<th>V_{GS}</th>
<th>I_{D}</th>
<th>P_{tot}</th>
<th>T_{ch}</th>
<th>T_{stg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMFS2-M1</td>
<td>6V</td>
<td>−3V</td>
<td>100mA</td>
<td>300mW</td>
<td>150°C</td>
<td>−55 to 150°C</td>
</tr>
<tr>
<td>XMFS3-M1</td>
<td>5V</td>
<td>−3V</td>
<td>60mA</td>
<td>200mW</td>
<td>150°C</td>
<td>−55 to 150°C</td>
</tr>
</tbody>
</table>

* : Power Dissipation (Tc=25°C)

ELECTRICAL SPECIFICATIONS
(Ta=25°C)

<table>
<thead>
<tr>
<th></th>
<th>V_{GSS}</th>
<th>I_{GS}</th>
<th>gm</th>
<th>V_{GS (OFF)}</th>
<th>Gas</th>
<th>F_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>I_{GSS}=−10μA</td>
<td>I_{DS}=3V</td>
<td>V_{DS}=3V</td>
<td>V_{DS}=3V</td>
<td>V_{DS}=3V</td>
<td></td>
</tr>
<tr>
<td>Conditions</td>
<td>V_{DS}=0V</td>
<td>V_{DS}=0V</td>
<td>I_{D}=30mA</td>
<td>I_{D}=1mA</td>
<td>I_{D}=10mA</td>
<td></td>
</tr>
<tr>
<td>XMFS2-M1</td>
<td>60mA</td>
<td>40mS</td>
<td>−5.0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ.</td>
<td>60mS</td>
<td>12dB</td>
<td>0.4dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>−3V</td>
<td>100mA</td>
<td>−1.0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>I_{GSS}=−10μA</td>
<td>I_{DS}=3V</td>
<td>V_{DS}=3V</td>
<td>V_{DS}=3V</td>
<td>V_{DS}=3V</td>
<td></td>
</tr>
<tr>
<td>Conditions</td>
<td>V_{DS}=0V</td>
<td>V_{DS}=0V</td>
<td>I_{D}=10mA</td>
<td>I_{D}=1mA</td>
<td>I_{D}=10mA</td>
<td></td>
</tr>
<tr>
<td>XMFS3-M1</td>
<td>15mA</td>
<td>30mS</td>
<td>−3.0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ.</td>
<td>34mS</td>
<td>15dB</td>
<td>0.4dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>−3V</td>
<td>60mA</td>
<td>−0.3V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S PARAMETERS
(V_{DS}=3.0V, I_{D}=10mA)

<table>
<thead>
<tr>
<th></th>
<th>XMFS2-M1</th>
<th>XMFS3-M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>freq.</td>
<td>S11</td>
<td>S11</td>
</tr>
<tr>
<td>(MHz)</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>500</td>
<td>0.988</td>
<td>−15.7</td>
</tr>
<tr>
<td>1000</td>
<td>0.949</td>
<td>−30.2</td>
</tr>
<tr>
<td>1500</td>
<td>0.862</td>
<td>−44.4</td>
</tr>
<tr>
<td>2000</td>
<td>0.783</td>
<td>−57.9</td>
</tr>
<tr>
<td>2500</td>
<td>0.704</td>
<td>−72.1</td>
</tr>
<tr>
<td>3000</td>
<td>0.628</td>
<td>−86.0</td>
</tr>
<tr>
<td>3500</td>
<td>0.563</td>
<td>−100.8</td>
</tr>
<tr>
<td>4000</td>
<td>0.500</td>
<td>−116.2</td>
</tr>
<tr>
<td>4500</td>
<td>0.446</td>
<td>−132.1</td>
</tr>
<tr>
<td>5000</td>
<td>0.403</td>
<td>−149.1</td>
</tr>
<tr>
<td>5500</td>
<td>0.377</td>
<td>−167.3</td>
</tr>
<tr>
<td>6000</td>
<td>0.368</td>
<td>−172.7</td>
</tr>
</tbody>
</table>
XMFP Series are designed for power applications up to C-band (to 6GHz). These devices are supplied in the plastic packages. (SOT-89') (*: XMFP4-M4 in the MURATA original plastic package.)

■ FEATURES
1. High Output Power.
2. High Linear Power Gain.

■ APPLICATIONS
• Power Amplifier.
 (for Base Stations of all wireless telecommunications.)

■ DIMENSIONS

XMFP1-M3

XMFP2-M3

XMFP3-M3

XMFP4-M4

Pin:
(1) Gate
(2) Source
(3) Drain

Marking:
A: Part No.
B: Lot No.
Plastic with Heat Sink

Dimensions in mm:
ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

<table>
<thead>
<tr>
<th></th>
<th>Vgs0</th>
<th>Vds0</th>
<th>Io</th>
<th>Ptot (*1)</th>
<th>Tch</th>
<th>Tstg</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMFP1-M3</td>
<td>−6V</td>
<td>−8V</td>
<td>350mA</td>
<td>1.2W</td>
<td>150°C</td>
<td>−55 to 150°C</td>
</tr>
<tr>
<td>XMFP2-M3</td>
<td>−6V</td>
<td>−8V</td>
<td>700mA</td>
<td>2.5W</td>
<td>150°C</td>
<td>−55 to 150°C</td>
</tr>
<tr>
<td>XMFP3-M3</td>
<td>−9V</td>
<td>−12V</td>
<td>2.2A</td>
<td>3.6W</td>
<td>150°C</td>
<td>−55 to 150°C</td>
</tr>
<tr>
<td>XMFP4-M4</td>
<td>−9V</td>
<td>−12V</td>
<td>4.0A</td>
<td>8.0W</td>
<td>150°C</td>
<td>−55 to 150°C</td>
</tr>
</tbody>
</table>

*1: Power Dissipation (To=25°C)

ELECTRICAL SPECIFICATIONS

(Ta=25°C)

<table>
<thead>
<tr>
<th></th>
<th>Vgs0</th>
<th>Vds0</th>
<th>Io (µA)</th>
<th>Vgs (OFF)</th>
<th>Po (*2)</th>
<th>ηadd (*2)</th>
<th>GmP</th>
<th>Rth (*3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMFP1-M3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMFP2-M3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMFP3-M3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMFP4-M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1: Pulsed Measurement; duty cycle 1:100; Isom=100µs

*2: Vg=5V, Vo=5V, Io=50mA, f=1.9GHz

*3: Channel to case
S PARAMETERS

XMFP1-M3 (Vds=4.0V, Is=75mA)

<table>
<thead>
<tr>
<th>freq. (MHz)</th>
<th>S11</th>
<th>S21</th>
<th>S12</th>
<th>S22</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>600</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>700</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>800</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>900</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1000</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1100</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1200</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1300</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1400</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1500</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1600</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1700</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1800</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1900</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>2000</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
</tbody>
</table>

XMFP2-M3 (Vds=4.0V, Is=200mA)

<table>
<thead>
<tr>
<th>freq. (MHz)</th>
<th>S11</th>
<th>S21</th>
<th>S12</th>
<th>S22</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>600</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>700</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>800</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>900</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1000</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1100</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1200</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1300</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1400</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1500</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1600</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1700</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1800</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1900</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>2000</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
</tbody>
</table>

XMFP3-M3 (Vds=4.0V, Is=600mA)

<table>
<thead>
<tr>
<th>freq. (MHz)</th>
<th>S11</th>
<th>S21</th>
<th>S12</th>
<th>S22</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>600</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>700</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>800</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>900</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1000</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1100</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1200</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1300</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1400</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1500</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1600</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1700</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1800</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1900</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>2000</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
</tbody>
</table>

XMFP4-M4 (Vds=5.0V, Is=1400mA)

<table>
<thead>
<tr>
<th>freq. (MHz)</th>
<th>S11</th>
<th>S21</th>
<th>S12</th>
<th>S22</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>600</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>700</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>800</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>900</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1000</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1100</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1200</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1300</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1400</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1500</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1600</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1700</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1800</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>1900</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
<tr>
<td>2000</td>
<td>MAG</td>
<td>ANG</td>
<td>MAG</td>
<td>ANG</td>
</tr>
</tbody>
</table>
CHARACTERISTICS
XMFP1-M3

Drain - Source Voltage V_{DS} (V)

Drain Current I_D (mA)

$V_{GS} = 0V$

$V_{GS} = -0.5V/STEP$

Power Added Efficiency η_{add}

Output Power P_0 (dBm)

Input Power P_{in} (dBm)

$V_{DS} = 3.0V$

$V_{DS} = 4.0V$

$I_D = 0.5 I_{DSS}$

$f = 1.9$ GHz

XMFP2-M3

Drain - Source Voltage V_{DS} (V)

Drain Current I_D (mA)

$V_{GS} = 0V$

$V_{GS} = -0.5V/STEP$

Power Added Efficiency η_{add}

Output Power P_0 (dBm)

Input Power P_{in} (dBm)

$V_{DS} = 3.0V$

$V_{DS} = 4.0V$

$I_D = 0.5 I_{DSS}$

$f = 1.9$ GHz
CHARACTERISTICS

XMFP3-M3

- **Io vs. VDS**
 - Drain Current (mA) vs. Drain-Source Voltage (V)
 - Gate-Source Voltage (V) = 0V

- **Po, \(\eta_{add} \) vs. Pin**
 - Output Power (dBm) vs. Input Power (dBm)
 - Power Added Efficiency (\%)

XMFP4-M4

- **Io vs. VDS**
 - Drain Current (mA) vs. Drain-Source Voltage (V)
 - Gate-Source Voltage (V) = 0V

- **Po, \(\eta_{add} \) vs. Pin**
 - Output Power (dBm) vs. Input Power (dBm)
 - Power Added Efficiency (\%)

Notes:
- \(\eta_{add} \) = Power Added Efficiency
- Input Power \(P_{in} \) in (dBm)
- Output Power \(P_o \) in (dBm)
- \(V_{DS} = 4.0V \) with \(I_o = 0.8A \), \(f = 1.9 \text{ GHz} \)
- \(V_{DS} = 4.8V \) with \(I_o = 1.6A \), \(f = 1.8 \text{ GHz} \)
- \(V_{GS} \) = 0.5 V/STEP
LAND PATTERNS
The recommended solder land patterns are shown below.

<table>
<thead>
<tr>
<th>XMFS2-M1</th>
<th>XMFP1-M3</th>
<th>XMFP4-M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMFS3-M1</td>
<td>XMFP2-M3</td>
<td>XMFP3-M3</td>
</tr>
</tbody>
</table>

SOLDERING CONDITION
The recommended soldering condition is shown below.
TAPE DIMENSIONS

![Tape Dimensions Diagram]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>XMFS2-M1</th>
<th>XMFP1-M3</th>
<th>XMFP2-M3</th>
<th>XMFP3-M3</th>
<th>XMFP4-M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>4.0±0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1.75±0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.5±0.05</td>
<td>5.5±0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>8.0±0.2</td>
<td>12.0±0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>φ1.5±0.1/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>4.0±0.1</td>
<td>8.0±0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>2.0±0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>3.3±0.1</td>
<td>4.45±0.1</td>
<td>6.25±0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W1</td>
<td>3.4±0.1</td>
<td>4.8±0.1</td>
<td>6.3±0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1.5±0.1</td>
<td>1.8±0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REEL DIMENSIONS

![Reel Dimensions Diagram]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>XMFS2-M1</th>
<th>XMFP1-M3</th>
<th>XMFP2-M3</th>
<th>XMFP3-M3</th>
<th>XMFP4-M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>φ178±2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>φ62±0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>φ13±0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>10.0±1.5</td>
<td>13.5±1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTICE

1. **Storage**
 - Please store in manufacturer's packing under the following conditions.
 - Temperature: $-10^\circ C$ to $+40^\circ C$, Humidity: 30 to 85% RH
 - As more than 6 months storage might degrade solderability, please confirm solderability before usage in that case.
 - Please do not store in the following environments, which could damage electrical characteristics or solderability.
 1. Dusty place
 2. Ambient air containing corrosive gases (Cl₂, H₂S, NH₃, SO₂, NOₓ, etc.)
 3. Ambient air containing volatile or combustible gases
 4. Depressurized or pressurized air
 5. Where water may splash or where humidity is so high that condensation could easily occur
 6. Environment subject to strong static charges or electromagnetic field
 7. Exposed to direct sunlight
 8. In liquid
 9. Influenced by low frequency vibration
 10. Other environments with risks similar to 1. through 9.

 Please contact the manufacturer before storing the products in any of the above environments.

2. **Handling Precautions**
 - As electrostatic field or discharge may degrade this product, please take methods such as wearing wrist strap, grounding working desk or equipments to avoid this damage.
 - Please do not touch the electrodes with bare hands, which may degrade solderability.
 - Please do not drop or throw this product directly to the floor.
 - When you transport the products, please pack them so as to keep them without excessive mechanical vibration or shock through its transportation.
 - Please contact the manufacturer before cleaning the product. Please do not use flon, trichloroethane and so on to protect the global environment.
 - Please do not attach water droplets or dust to the product. Please contact the manufacturer if you have any questions concerning the handling of this product.
 - Heat management is necessary in order to use this product.
NOISE FIGURE TEST SYSTEM

- Noise Source
- Bias Tee
- Tuner
- D.U.T.
- Tuner
- Bias Tee
- Low Noise Amplifier
- Synthesizer
- Mixer
- Noise Figure Meter
- VGS
- Gate Bias
- VDS
- ID
- RF Amplifier
- Power Meter
- Power Meter
- Rg (= 100Ω)

POWER TEST SYSTEM

- Synthesizer
- RF Amplifier
- Power Meter
- Power Meter
- Bias Tee
- Tuner
- D.U.T.
- Tuner
- Bias Tee
- ATT.
- Power Meter
- Rg (= 100Ω)

IM3 TEST SYSTEM

- Synthesizer 1
- Amplifier 1
- 3dB HYB
- VAR ATT.
- Power Meter
- Spectrum Analyzer
- VGS
- Gate Bias
- VDS
- ID
- Bias Tee
- Tuner
- D.U.T.
- Tuner
- Bias Tee
- ATT.
- Power Meter
Cellular Phone

- Antenna
- Band Pass Filter
- Low Noise Amplifier
- Band Pass Filter
- Mixer
- Switch or Duplexer
- Low Pass Filter
- Power Amplifier
- Driver Amplifier
- Band Pass Filter

BS/CS Receiver

- Antenna
- Low Noise Amplifier
- Low Noise Amplifier 1
- Low Noise Amplifier 2
- Band Pass Filter
- Mixer
- Oscillator
- XMFS2
- XMFS3
- XMFP1
- XMFP2

PHS

- Antenna
- Band Pass Filter
- Low Noise Amplifier
- Band Pass Filter
- Mixer
- Switch
- Low Pass Filter
- Power Amplifier
- Driver Amplifier
- Band Pass Filter
- Pin Driver /BIAS

GPS Receiver

- Antenna
- Band Pass Filter
- Low Noise Amplifier

Wireless LAN

- Antenna
- Band Pass Filter
- Low Noise Amplifier
- Mixer
- Switch or Duplexer
- Low Pass Filter
- Power Amplifier
- Band Pass Filter
- Mixer

Block Diagram of Application

13
GaAs FIELD EFFECT TRANSISTOR
XMFP1-M3 1.8GHz Test Board

LAYOUT

SCHEMATIC

TYPICAL CHARACTERISTICS

HANDLING OF TEST BOARD

1. Precaution
Before handling test boards, avoid any cause of electrostatic discharge and surge.
The measurement instruments must be grounded, and the operator is recommended to wear a wrist strap.

2. Bias Procedure
- Set slowly the gate to source voltage, to V_{GG} recommended for each test board.
- Adjust gradually the drain to source voltage, to V_{DD}.
- Check the Io is about 0.5Ios. If it is not, adjust Vos so that Io approaches 0.5Ios.
- Input RF power to RF port of test board from lower level, and measure electrical characteristics.
- When biasing off, the reverse procedure is recommended.
- Note that the bias condition during test should not exceed its absolute maximum ratings.
1. **Precaution**

Before handling test boards, avoid any cause of electrostatic discharge and surge. The measurement instruments must be grounded, and the operator is recommended to wear a wrist strap.

2. **Bias Procedure**

- Set slowly the gate to source voltage, to \(V_{GG} \) recommended for each test board.
- Adjust gradually the drain to source voltage, to \(V_{DD} \).
- Check the \(I_D \) is about 0.5\(I_{DSS} \). If it is not, adjust \(V_{GG} \) so that \(I_D \) approaches 0.5\(I_{DSS} \).
- Input RF power to RF port of test board from lower level, and measure electrical characteristics.
- When biasing off, the reverse procedure is recommended.
- Note that the bias condition during test should not exceed its absolute maximum ratings.
GaAs FIELD EFFECT TRANSISTOR
XMFP3-M3 0.9GHz Test Board

LAYOUT

SUBSTRATE (Glass-epoxy): t=0.8mm, εr=4.4
Heat sink (Duralumin): 50×35×10mm
Chip C: GRM93series (MURATA)
Chip R: MCR03series (ROHM)
Supply Voltage: VGG = 3.5V, VDD = 4.8V

SCHEMATIC

Gamma for max output power matching
ΓS = 0.73, θ = 148°
ΓL = 0.77, θ = 162°

HANDLING OF TEST BOARD

1. Precaution
Before handling test boards, avoid any cause of electrostatic discharge and surge.
The measurement instruments must be grounded, and the operator is recommended to wear a wrist strap.

2. Bias Procedure
- Set slowly the gate to source voltage, to VGG recommended for each test board.
- Adjust gradually the drain to source voltage, to VDD.
- Check the Io is about 0.5I0SS. If it is not, adjust VGG so that Io approaches 0.5I0SS.
- Input RF power to RF port of test board from lower level, and measure electrical characteristics.
- When biasing off, the reverse procedure is recommended.
- Note that the bias condition during test should not exceed its absolute maximum ratings.

TYPICAL CHARACTERISTICS

Po, ηadd vs. Pin

VGG = 4.8V
VDD = 4.8V
f = 0.9GHz

Po, ηadd vs. Pin

Power Added Efficiency ηadd (%)

Output Power Po (dBm)

Input Power Pin (dBm)
GaAs FIELD EFFECT TRANSISTOR
XMFP3-M3 1.8GHz Test Board

HANDLING OF TEST BOARD

1. Precaution

 Before handling test boards, avoid any cause of electrostatic discharge and surge.

 The measurement instruments must be grounded, and the operator is recommended to wear a wrist strap.

2. Bias Procedure

 - Set slowly the gate to source voltage, to V_{GG} recommended for each test board.
 - Adjust gradually the drain to source voltage, to V_{DD}.
 - Check the I_D is about $0.5I_{DSS}$. If it is not, adjust V_{GG} so that I_D approaches $0.5I_{DSS}$.
 - Input RF power to RF port of test board from lower level, and measure electrical characteristics.
 - When biasing off, the reverse procedure is recommended.
 - Note that the bias condition during test should not exceed its absolute maximum ratings.

TYPICAL CHARACTERISTICS

- P_o, η_{add} vs. P_{in}

 - $V_{DD} = 4.8V$
 - $V_{GG} = -3.5V$
 - $f = 1.8GHz$

 - P_o, η_{add}

LAYOUT

- Substrate: Glass-epoxy: t=0.8mm, $\varepsilon_r=4.4$
- Heat sink: Duralumin: 50×35×10mm
- Chip C: GRM39series (MURATA)
- Chip R: MCR03series (ROHM)
- Supply Voltage: $V_{GG} = 3.5V, V_{DD} = 4.8V$

SCHEMATIC

- Γ_{max} for max output power matching

 - $\Gamma_{S} = 0.82, \angle = 177$
 - $\Gamma_{L} = 0.73, \angle = 166$

Parts List

- FET XMFP3-M3
- C1 1000pF
- C2 2pF
- C3 4700pF
- C4 2pF
- C5 1pF
- C6 4700pF
- C7 1000pF
- R1 1kΩ
- M1 1kΩ
GaAs FIELD EFFECT TRANSISTOR

XMFP4-M4 0.9GHz Test Board

Handling of Test Board

1. **Precaution**
 Before handling test boards, avoid any cause of electrostatic discharge and surge.
 The measurement instruments must be grounded, and the operator is recommended to wear a wrist strap.

2. **Bias Procedure**
 - Set slowly the gate to source voltage, to V_{GG} recommended for each test board.
 - Adjust gradually the drain to source voltage, to V_{DD}.
 - Check the I_D is about 0.5I_{DSS}. If it is not, adjust V_{GG} so that I_D approaches 0.5I_{DSS}.
 - Input RF power to RF port of test board from lower level, and measure electrical characteristics.
 - When biasing off, the reverse procedure is recommended.
 - Note that the bias condition during test should not exceed its absolute maximum ratings.

Typical Characteristics

![Schematic Diagram](image)

- **Parts List**
 - **FET** XMFP4-M4
 - **C1** 1000pF
 - **C2** 5pF
 - **C3** 4700pF
 - **C4** 10pF
 - **C5** 1pF
 - **C6** 1000pF
 - **C7** 50pF
 - **R1** 2.2kΩ
 - **R2** 2.2kΩ

![Typical Characteristics Graph](image)

- **P_o, η_{add} vs. P_{in}**
 - $V_{DD} = 4.8V$
 - $V_{GG} = -6.0V$
 - $f = 0.9GHz$

- **Layout**
 - Substrate (Glass-epoxy): $t=0.8mm, \varepsilon_r=4.4$
 - Heat sink (Duralumin): $50\times35\times10mm$
 - Chip C: GRM39series (MURATA)
 - Chip R: MCR03series (ROHM)
 - Supply Voltage: $V_{GG} = 6.0V, V_{DD} = 4.8V$
GaAs FIELD EFFECT TRANSISTOR
XMFP4-M4 1.8GHz Test Board

HANDLING OF TEST BOARD

1. **Precaution**
 - Before handling test boards, avoid any cause of electrostatic discharge and surge.
 - The measurement instruments must be grounded, and the operator is recommended to wear a wrist strap.

2. **Bias Procedure**
 - Set slowly the gate to source voltage, to \(V_{GG} \) recommended for each test board.
 - Adjust gradually the drain to source voltage, to \(V_{DD} \).
 - Check the \(I_{D} \) is about 0.5\(I_{DSS} \). If it is not, adjust \(V_{GG} \) so that \(I_{D} \) approaches 0.5\(I_{DSS} \).
 - Input RF power to RF port of test board from lower level, and measure electrical characteristics.
 - When biasing off, the reverse procedure is recommended.
 - Note that the bias condition during test should not exceed its absolute maximum ratings.

TYPICAL CHARACTERISTICS

- **Po, \(\eta_{add} \) vs. Pin**
 - \(V_{DD} = 4.8\)V
 - \(V_{GG} = -6.0\)V
 - \(f = 1.8\)GHz

LAYOUT

- **Substrate (Glass-epoxy)**: \(t = 0.8\)mm, \(\epsilon_r = 4.4 \)
- **Heat sink (Duralumin)**: \(50 \times 35 \times 10\)mm
- **Chip C**: GRM39series (MURATA)
- **Chip R**: MCR03series (ROHM)
- **Supply Voltage**: \(V_{GG} = 6.0\)V, \(V_{DD} = 4.8\)V

SCHEMATIC

- **\(\Gamma \) for max output power matching**
 - \(\Gamma_{III} = 0.80, \angle = -170 \)°
 - \(\Gamma_{L} = 0.80, \angle = 158 \)°

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FET</td>
<td>XMFP4-M4</td>
</tr>
<tr>
<td>C1</td>
<td>1000pF</td>
</tr>
<tr>
<td>C2</td>
<td>6pF</td>
</tr>
<tr>
<td>C3</td>
<td>4700pF</td>
</tr>
<tr>
<td>C4</td>
<td>6pF</td>
</tr>
<tr>
<td>C5</td>
<td>1pF</td>
</tr>
<tr>
<td>C6</td>
<td>4700pF</td>
</tr>
<tr>
<td>C7</td>
<td>1000pF</td>
</tr>
<tr>
<td>R1</td>
<td>2.2kΩ</td>
</tr>
<tr>
<td>R2</td>
<td>2.2kΩ</td>
</tr>
</tbody>
</table>
1. Export Control

For customers outside Japan

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.

For customers in Japan

For products which are controlled items subject to “the Foreign Exchange and Foreign Trade Control Law” of Japan, the export license specified by the law is required for export.

2. Please contact our sales representatives or engineers before using our products listed in this catalog for the applications requiring especially high reliability what detects might directly cause damage to other party’s life, body or property (listed below) or for other applications not specified in this catalog.

- Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Medical equipment
- Transportation equipment (automobiles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data-processing equipment
- Applications of similar complexity or with reliability requirements comparable to the applications listed in the above

3. Product specifications in this catalog are as of May 1997, and are subject to change or stop the supply without notice. Please confirm the specifications before ordering any product. If there are any questions, please contact our sales representatives or engineers.

4. The categories and specifications listed in this catalog are for information only. Please confirm detailed specifications by checking the product specification contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.

5. None of ozone depleting substances (ODS) under the Montreal Protocol is used in manufacturing process of us.

6. Note:

None of ozone depleting substances (ODS) under the Montreal Protocol is used in manufacturing process of us.

Note:

1. Export Control

For customers outside Japan

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.

For customers in Japan

For products which are controlled items subject to “the Foreign Exchange and Foreign Trade Control Law” of Japan, the export license specified by the law is required for export.

2. Please contact our sales representatives or engineers before using our products listed in this catalog for the applications requiring especially high reliability what detects might directly cause damage to other party’s life, body or property (listed below) or for other applications not specified in this catalog.

- Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Medical equipment
- Transportation equipment (automobiles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data-processing equipment
- Applications of similar complexity or with reliability requirements comparable to the applications listed in the above

3. Product specifications in this catalog are as of May 1997, and are subject to change or stop the supply without notice. Please confirm the specifications before ordering any product. If there are any questions, please contact our sales representatives or engineers.

4. The categories and specifications listed in this catalog are for information only. Please confirm detailed specifications by checking the product specification contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.

5. None of ozone depleting substances (ODS) under the Montreal Protocol is used in manufacturing process of us.

6. Note:

None of ozone depleting substances (ODS) under the Montreal Protocol is used in manufacturing process of us.